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Objectives

Upon learning the material presented in this chapter, you

should be able to:

1. Evaluate the electric field and electric potential due to any

distribution of electric charges.

2. Apply Gauss’s law.

3. Calculate the resistance R of any shaped object given the

electric field at every point in its volume.

4. Describe the operational principles of resistive and capac-

itive sensors.

5. Calculate the capacitance of two-conductor configura-

tions.

Electrostatics

Chapter 2



2-1 Maxwell’s Equations

The modern theory of electromagnetism is based on a set of
four fundamental relations known as Maxwell’s equations:

∇ ·D = ρv,

∇×××E = −∂B

∂ t
,

∇ ·B = 0,

∇×××H = J +
∂D

∂ t
.

(4.1a)

(4.1b)

(4.1c)

(4.1d)

Here E and D are the electric field intensity and flux density

interrelated by D = εE where ε is the electrical permittivity;

H and B are magnetic field intensity and flux density inter-
related by B = µH where µ is the magnetic permeability;

ρv is the electric charge density per unit volume; and J is

the current density per unit area. The fields and fluxes E,
D, B, H were introduced in Section 1-3, and ρv and J will

be discussed in Section 4-2. Maxwell’s equations hold in

any material, including free space (vacuum). In general, all
of the above quantities may depend on spatial location and

time t. In the interest of readability, we will not, however,

explicitly reference these dependencies (as in E(x,y,z, t))
except when the context calls for it. By formulating these

equations, published in a classic treatise in 1873, James Clerk
Maxwell established the first unified theory of electricity and

magnetism. His equations are deduced from experimental

observations reported by Coulomb, Gauss, Ampère, Faraday,
and others; they not only encapsulate the connection between

the electric field and electric charge and between the magnetic

field and electric current but also capture the bilateral coupling
between electric and magnetic fields and fluxes. Together with

some auxiliary relations, Maxwell’s equations comprise the

fundamental tenets of electromagnetic theory.

◮ Under static conditions, none of the quantities appear-
ing in Maxwell’s equations are functions of time (i.e.,

∂/∂ t = 0). This happens when all charges are perma-

nently fixed in space. If they move, they do so at a steady

rate so that ρv and J are constant in time. ◭

Under these circumstances, the time derivatives of B and D in
Eqs. (4.1b) and (4.1d) vanish, and Maxwell’s equations reduce

to the following pairs.

Electrostatics

∇ ·D = ρv,

∇×××E = 0.

(4.2a)

(4.2b)

Magnetostatics

∇ ·B = 0,

∇×××H = J.

(4.3a)

(4.3b)

Maxwell’s four equations separate into two uncoupled pairs

with the first pair involving only the electric field and flux E

and D and the second pair involving only the magnetic field
and flux H and B.

◮ Electric and magnetic fields become decoupled under

static conditions. ◭

This allows us to study electricity and magnetism as two
distinct and separate phenomena as long as the spatial distri-

butions of charge and current flow remain constant in time.
We refer to the study of electric and magnetic phenomena

under static conditions as electrostatics and magnetostatics,

respectively. Electrostatics is the subject of the present chapter,
and we learn about magnetostatics in Chapter 5. The experi-

ence gained through studying electrostatic and magnetostatic

phenomena will prove invaluable in tackling the more involved
material in subsequent chapters that deal with time-varying

fields, charge densities, and currents.

We study electrostatics not only as a prelude to the study
of time-varying fields but also because it is an important field

in its own right. Many electronic devices and systems are

based on the principles of electrostatics. They include x-ray
machines, oscilloscopes, ink-jet electrostatic printers, liq-

uid crystal displays, copy machines, micro-electromechanical

switches and accelerometers, and many solid-state–based con-
trol devices. Electrostatic principles also guide the design of

medical diagnostic sensors, such as the electrocardiogram,
which records the heart’s pumping pattern, and the electroen-

cephalogram, which records brain activity, as well as the

development of numerous industrial applications.

2-2 Charge and Current Distributions

In electromagnetics, we encounter various forms of electric

charge distributions. When put in motion, these charge distri-

butions constitute current distributions. Charges and currents
may be distributed over a volume of space, across a surface, or

along a line.
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2-2.1 Charge Densities

At the atomic scale, the charge distribution in a material

is discrete, meaning that charge exists only where electrons
and nuclei are and nowhere else. In electromagnetics, we

usually are interested in studying phenomena at a much larger

scale, typically three or more orders of magnitude greater than
the spacing between adjacent atoms. At such a macroscopic

scale, we can disregard the discontinuous nature of the charge
distribution and treat the net charge contained in an elemental

volume ∆υ as if it were uniformly distributed within. Accord-

ingly, we define the volume charge density ρv as

ρv = lim
∆υ→0

∆q

∆υ
=

dq

dυ
(C/m3), (4.4)

where ∆q is the charge contained in ∆υ . In general, ρv de-

pends on spatial location (x,y,z) and t; thus, ρv = ρv(x,y,z, t).
Physically, ρv represents the average charge per unit volume
for a volume ∆υ centered at (x,y,z) with ∆υ being large

enough to contain a large number of atoms, yet it is small

enough to be regarded as a point at the macroscopic scale
under consideration. The variation of ρv with spatial location is

called its spatial distribution (or simply its distribution). The
total charge contained in volume υ is

Q =

∫

υ
ρv dυ (C). (4.5)

In some cases, particularly when dealing with conductors,

electric charge may be distributed across the surface of a

material, where the quantity of interest is the surface charge
density ρs, which is defined as

ρs = lim
∆s→0

∆q

∆s
=

dq

ds
(C/m2), (4.6)

where ∆q is the charge present across an elemental surface
area ∆s. Similarly, if the charge is, for all practical purposes,

confined to a line, which need not be straight, we characterize

its distribution in terms of the line charge density ρℓ, defined
as

ρℓ = lim
∆l→0

∆q

∆l
=

dq

dl
(C/m). (4.7)

Example2-1: Line Charge Distribution

Calculate the total charge Q contained in a cylindrical tube

oriented along the z axis, as shown in Fig. 4-1(a). The line
charge density is ρℓ = 2z, where z is the distance in meters

from the bottom end of the tube. The tube length is 10 cm.

(a)  Line charge distribution

(b)  Surface charge distribution

Surface charge ρs

z

x

y

3 cm

r
ϕ

z

x

y

Line charge ρl
10 cm

Figure 4-1 Charge distributions for Examples 4-1 and 4-2.

Solution: The total charge Q is

Q =
∫ 0.1

0
ρℓ dz =

∫ 0.1

0
2z dz = z2

∣

∣

0.1

0
= 10−2 C.

Example2-2: Surface Charge Distribution

The circular disk of electric charge shown in Fig. 4-1(b)

is characterized by an azimuthally symmetric surface charge

density that increases linearly with r from zero at the center to
6 C/m2 at r = 3 cm. Find the total charge present on the disk

surface.

Solution: Since ρs is symmetrical with respect to the azimuth
angle φ , it depends only on r and is given by

ρs =
6r

3×10−2
= 2×102r (C/m2),

where r is in meters. In polar coordinates, an elemental area

is ds = r dr dφ , and for the disk shown in Fig. 4-1(b), the



limits of integration are from 0 to 2π (rad) for φ and from 0 to
3×10−2 m for r. Hence,

Q =

∫

S
ρs ds =

∫ 2π

φ=0

∫ 3×10−2

r=0
(2×102r)r dr dφ

= 2π ×2×102 r3

3

∣

∣

∣

∣

3×10−2

0

= 11.31 (mC).

Exercise 4-1: A square plate residing in the x–y plane

is situated in the space defined by −3 m ≤ x ≤ 3 m and
−3 m ≤ y ≤ 3 m. Find the total charge on the plate if the

surface charge density is ρs = 4y2 (µC/m2).

Answer: Q = 0.432 (mC). (See EM .)

Exercise 4-2: A thick spherical shell centered at the origin
extends between R = 2 cm and R = 3 cm. If the volume

charge density is ρv = 3R× 10−4 (C/m3), find the total
charge contained in the shell.

Answer: Q = 0.61 (nC). (See EM .)

2-2.2 Current Density

Consider a tube with volume charge density ρv (Fig. 4-2(a)).
The charges in the tube move with velocity u along the tube

axis. Over a period ∆t, the charges move a distance ∆l = u ∆t.
The amount of charge that crosses the tube’s cross-sectional

surface ∆s′ in time ∆t is therefore

∆q′ = ρv ∆υ = ρv ∆l ∆s′ = ρvu ∆s′ ∆t. (4.8)

Now consider the more general case where the charges are
flowing through a surface ∆s with normal n̂ not necessarily

parallel to u (Fig. 4-2(b)). In this case, the amount of charge ∆q

flowing through ∆s is

∆q = ρvu ·∆s ∆t, (4.9)

where ∆s = n̂ ∆s and the corresponding total current flowing

in the tube is

∆I =
∆q

∆t
= ρvu ·∆s = J ·∆s. (4.10)

Here

J = ρvu (A/m2) (4.11)

is defined as the current density in ampere per square meter.

Generalizing to an arbitrary surface S, the total current flowing

Volume charge ρv

u

∆l

∆q' = ρvu ∆s' ∆t

∆s'

∆sρv

u ∆q = ρvu • ∆s ∆t 

      = ρvu ∆s ∆t cos θ

∆s = n ∆s

(a)

(b)

θ 

ˆ

Figure 4-2 Charges with velocity u moving through a cross

section ∆s′ in (a) and ∆s in (b).

through it is

I =
∫

S
J ·ds (A). (4.12)

◮ When a current is due to the actual movement of elec-

trically charged matter, it is called a convection current,
and J is called a convection current density. ◭

A wind-driven charged cloud, for example, gives rise to a con-

vection current. In some cases, the charged matter constituting

the convection current consists solely of charged particles,
such as the electron beam of a scanning electron microscope

or the ion beam of a plasma propulsion system.

When a current is due to the movement of charged particles
relative to their host material, J is called a conduction current

density. In a metal wire, for example, there are equal amounts
of positive charges (in atomic nuclei) and negative charges (in

the electron shells of the atoms). None of the positive charges

and few of the negative charges can move; only those electrons
in the outermost electron shells of the atoms can be pushed

from one atom to the next if a voltage is applied across the

ends of the wire.

◮ This movement of electrons from atom to atom con-

stitutes a conduction current. The electrons that emerge
from the wire are not necessarily the same electrons that

entered the wire at the other end. ◭



Conduction current, which is discussed in more detail in
Section2-6, obeys Ohm’s law, whereas convection current

does not.

Concept Question 2-1: What happens to Maxwell’s
equations under static conditions?

Concept Question 2-2: How is the current density J

related to the volume charge density ρv?

Concept Question 2-3: What is the difference between

convection and conduction currents?

2-3 Coulomb’s Law

One of the primary goals of this chapter is to develop dexterity

in applying the expressions for the electric field intensity E

and associated electric flux density D induced by a specified
distribution of charge. Our discussion will be limited to elec-

trostatic fields induced by stationary charge densities.
We begin by reviewing the expression for the electric

field introduced in Section 1-3.2 on the basis of the results

of Coulomb’s experiments on the electrical force between
charged bodies. Coulomb’s law, which was first introduced for

electrical charges in air and later generalized to material media,

implies that:

(1) An isolated charge q induces an electric field E at every

point in space, and at any specific point P, E is given by

E = R̂
q

4πεR2
(V/m), (4.13)

where R̂ is a unit vector pointing from q to P (Fig. 4-3),

R is the distance between them, and ε is the electrical

permittivity of the medium containing the observation
point P.

(2) In the presence of an electric field E at a given point in

space that may be due to a single charge or a distribution

of charges, the force acting on a test charge q′ when
placed at P is

F = q′E (N). (4.14)

With F measured in newtons (N) and q′ in coulombs (C), the

unit of E is (N/C), which will be shown later in Section 4-5 to

be the same as volt per meter (V/m).
For a material with electrical permittivity ε , the electric field

quantities D and E are related by

D = εE (4.15)

R

P E

R

+q

ˆ

Figure 4-3 Electric field lines due to a charge q.

with

ε = εrε0, (4.16)

where

ε0 = 8.85×10−12 ≈ (1/36π)×10−9 (F/m)

is the electrical permittivity of free space and εr = ε/ε0 is

called the relative permittivity (or dielectric constant) of the
material. For most materials and under a wide range of con-

ditions, ε is independent of both the magnitude and direction
of E [as implied by Eq. (4.15)].

◮ If ε is independent of the magnitude of E, then the

material is said to be linear because D and E are related

linearly, and if it is independent of the direction of E, the
material is said to be isotropic. ◭

Materials usually do not exhibit nonlinear permittivity behav-

ior except when the amplitude of E is very high (at levels
approaching dielectric breakdown conditions discussed later in

Section 4-7), and anisotropy is present only in certain materials
with peculiar crystalline structures. Hence, except for unique

materials under very special circumstances, the quantities D

and E are effectively redundant; for a material with known ε ,
knowledge of either D or E is sufficient to specify the other in

that material.

2-3.1 Electric Field Due to Multiple Point
Charges

The expression given by Eq. (4.13) for the field E due to

a single point charge can be extended to multiple charges.
We begin by considering two point charges, q1 and q2, with

position vectors R1 and R2 (measured from the origin in
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y
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q1

q2

PR – R1

R – R2

R1

E2

E1

E

R2

R

Figure 2-4 The electric field E at P due to two charges is equal

to the vector sum of E1 and E2.

Fig.2-4 ). The electric field E is to be evaluated at a point P

with position vector R. At P, the electric field E1 due to q1

alone is given by Eq. ( 2.13) withR, which is the distance

between q1 and P, replaced with |R−R1| and the unit vector R̂

replaced with (R−R1)/|R−R1|. Thus,

E1 =
q1(R−R1)

4πε|R−R1|3
(V/m). (4.17a)

Similarly, the electric field at P due to q2 alone is

E2 =
q2(R−R2)

4πε|R−R2|3
(V/m). (4.17b)

◮ The electric field obeys the principle of linear superpo-

sition. ◭

Hence, the total electric field E at P due to q1 and q2 together
is determined as

E = E1 + E2

=
1

4πε

[

q1(R−R1)

|R−R1|3
+

q2(R−R2)

|R−R2|3
]

. (4.18)

Generalizing the preceding result to the case of N point

charges, the electric field E at point P with position vector R

due to charges q1,q2, . . . ,qN located at points with position

vectors R1,R2, . . . ,RN equals the vector sum of the electric

fields induced by all the individual charges. Thus,

E =
1

4πε

N

∑
i=1

qi(R−Ri)

|R−Ri|3
(V/m). (4.19)

Example 2-3: Electric Field Due to Two
Point Charges

Two point charges with

q1 = 2×10−5 C

and
q2 = −4×10−5 C

are located in free space at points with Cartesian coordinates
(1,3,−1) and (−3,1,−2), respectively. Find (a) the electric

field E at (3,1,−2) and (b) the force on a 8× 10−5 C charge

located at that point. All distances are in meters.

Solution: (a) From Eq. (4.18), the electric field E with ε = ε0

(free space) is

E =
1

4πε0

[

q1
(R−R1)

|R−R1|3
+ q2

(R−R2)

|R−R2|3
]

(V/m).

The vectors R1, R2, and R are

R1 = x̂+ ŷ3− ẑ,

R2 = −x̂3 + ŷ− ẑ2,

R = x̂3 + ŷ− ẑ2.

Hence,

E =
1

4πε0

[

2(x̂2− ŷ2− ẑ)

27
− 4(x̂6)

216

]

×10−5

=
x̂− ŷ4− ẑ2

108πε0

×10−5 (V/m).

(b) The force on q3 is

F = q3E = 8×10−5× x̂− ŷ4− ẑ2

108πε0

×10−5

=
x̂2− ŷ8− ẑ4

27πε0

×10−10 (N).

Exercise2-3: Four charges of 10 µC each are located in

free space at points with Cartesian coordinates (−3,0,0),
(3,0,0), (0,−3,0), and (0,3,0). Find the force on a 20 µC
charge located at (0,0,4). All distances are in meters.

Answer: F = ẑ0.23 N. (See EM .)

Exercise2-4: Two identical charges are located on the

x axis at x = 3 and x = 7. At what point in space is the net

electric field zero?

Answer: At point (5,0,0). (See EM .)



Exercise2-5: In a hydrogen atom, the electron and proton
are separated by an average distance of 5.3× 10−11 m.

Find the magnitude of the electrical force Fe between

the two particles, and compare it with the gravitational
force Fg between them.

Answer: Fe = 8.2× 10−8 N, and Fg = 3.6× 10−47 N.

(See EM .)

2-3.2 Electric Field Due to a Charge Distribution

We now extend the results obtained for the field due to discrete

point charges to continuous charge distributions. Consider a

volume υ ′ that contains a distribution of electric charge with
volume charge density ρv, which may vary spatially within υ ′

(Fig. 4-5). The differential electric field at a point P due to

a differential amount of charge dq = ρv dυ ′ contained in a
differential volume dυ ′ is

dE = R̂
′ dq

4πεR′2 = R̂
′ ρv dυ ′

4πεR′2 , (4.20)

where R′ is the vector from the differential volume dυ ′ to
point P. Applying the principle of linear superposition, the

total electric field E is obtained by integrating the fields due

to all differential charges in υ ′. Thus,

E =

∫

υ ′
dE =

1

4πε

∫

υ ′
R̂
′ ρv dυ ′

R′2 .

(volume distribution)

(4.21a)

It is important to note that, in general, both R′ and R̂
′
vary as a

function of position over the integration volume υ ′.

P

R'

dE

ρv dυ' υ'

Figure 4-5 Electric field due to a volume charge distribution.

If the charge is distributed across a surface S′ with surface
charge density ρs, then dq = ρs ds′, and if it is distributed

along a line l′ with a line charge density ρℓ, then dq = ρℓ dl′.
Accordingly, the electric fields due to surface and line charge
distributions are

E =
1

4πε

∫

S′
R̂
′ ρs ds′

R′2 ,

(surface distribution)

(4.21b)

E =
1

4πε

∫

l′
R̂
′ ρℓ dl′

R′2 .

(line distribution)

(4.21c)

Example2-4: Electric Field of a Ring of Charge

A ring of charge of radius b is characterized by a uniform line

charge density of positive polarity ρℓ. The ring resides in free
space and is positioned in the x–y plane, as shown in Fig. 4-6.

Determine the electric field intensity E at a point P = (0,0,h)
along the axis of the ring at a distance h from its center.

Solution: We start by considering the electric field generated

by a differential ring segment with cylindrical coordinates
(b,φ ,0) in Fig. 4-6(a). The segment has length dl = b dφ and

contains charge dq = ρℓ dl = ρℓb dφ . The distance vector R′
1

from segment 1 to point P = (0,0,h) is

R′
1 = −r̂b + ẑh,

from which it follows that

R′
1 = |R′

1| =
√

b2 + h2 , R̂
′
1 =

R′
1

|R′
1|

=
−r̂b + ẑh√

b2 + h2
.

The electric field at P = (0,0,h) due to the charge in segment 1

therefore is

dE1 =
1

4πε0

R̂
′
1

ρℓ dl

R′
1

2
=

ρℓb

4πε0

(−r̂b + ẑh)

(b2 + h2)3/2
dφ .

The field dE1 has component dE1r along −r̂ and com-

ponent dE1z along ẑ. From symmetry considerations, the

field dE2 generated by differential segment 2 in Fig. 4-6(b),
which is located diametrically opposite to segment 1, is identi-

cal to dE1 except that the r̂ component of dE2 is opposite that



(a)

(b)
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+
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+

+

+
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+b

h

z

P = (0, 0, h)

R'1
ρl

dE1r

dE1
dE1z

dφ 

1

y

x

dl = b dφ

R'1
R'2

+

+

+

+
+

+

+

+

+

+

+
+ y

x

dE1
dE2

dE1r
dE2r

1

2

dE = dE1 + dE2

φ + π 

φ

z

Figure2-6 Ring of charge with line density ρℓ. (a) The

field dE1 due to infinitesimal segment 1 and (b) the fields dE1

and dE2 due to segments at diametrically opposite locations

(Example 4-4).

of dE1. Hence, the r̂ components in the sum cancel and the ẑ

contributions add. The sum of the two contributions is

dE = dE1 + dE2 = ẑ
ρℓbh

2πε0

dφ

(b2 + h2)3/2
. (4.22)

Since for every ring segment in the semicircle defined over the

azimuthal range 0 ≤ φ ≤ π (the right-hand half of the circular
ring) there is a corresponding segment located diametrically

opposite at (φ + π), we can obtain the total field generated by
the ring by integrating Eq. (4.22) over a semicircle as

E = ẑ
ρℓbh

2πε0(b2 + h2)3/2

∫ π

0
dφ

= ẑ
ρℓbh

2ε0(b2 + h2)3/2
= ẑ

h

4πε0(b2 + h2)3/2
Q, (4.23)

where Q = 2πbρℓ is the total charge on the ring.

Example2-5: Electric Field of a Circular
Disk of Charge

Find the electric field at point P with Cartesian coordinates

(0,0,h) due to a circular disk of radius a and uniform charge

density ρs residing in the x–y plane (Fig. 4-7). Also, evaluate E

due to an infinite sheet of charge density ρs by letting a → ∞.

z

P = (0, 0, h)

h

y

x

a

a

r

dr

dq = 2πρsr drρs

E

Figure2-7 Circular disk of charge with surface charge

density ρs. The electric field at P = (0,0,h) points along the

z direction (Example 4-5).

Solution: Building on the expression obtained in Exam-
ple 4-4 for the on-axis electric field due to a circular ring of

charge, we can determine the field due to the circular disk

by treating the disk as a set of concentric rings. A ring of
radius r and width dr has an area ds = 2πr dr and contains

charge dq = ρs ds = 2πρsr dr. Upon using this expression in



Eq. (4.23) and also replacing b with r, we obtain the following
expression for the field due to the ring:

dE = ẑ
h

4πε0(r2 + h2)3/2
(2πρsr dr).

The total field at P is obtained by integrating the expression

over the limits r = 0 to r = a:

E = ẑ
ρsh

2ε0

∫ a

0

r dr

(r2 + h2)3/2
= ±ẑ

ρs

2ε0

[

1− |h|√
a2 + h2

]

,

(4.24)

with the plus sign for h > 0 (P above the disk) and the minus

sign when h < 0 (P below the disk).
For an infinite sheet of charge with a = ∞,

E = ±ẑ
ρs

2ε0

.

(infinite sheet of charge)

(4.25)

We note that for an infinite sheet of charge E is the same at all

points above the x–y plane, and a similar statement applies for

points below the x–y plane.

Concept Question 4-4: When characterizing the elec-
trical permittivity of a material, what do the terms linear

and isotropic mean?

Concept Question 4-5: If the electric field is zero at

a given point in space, does this imply the absence of
electric charges?

Concept Question 4-6: State the principle of linear

superposition as it applies to the electric field due to a

distribution of electric charge.

Exercise 4-6: An infinite sheet with uniform surface
charge density ρs is located at z = 0 (x–y plane), and

another infinite sheet with density −ρs is located at

z = 2 m with both in free space. Determine E everywhere.

Answer: E = 0 for z < 0; E = ẑρs/ε0 for 0 < z < 2 m;

and E = 0 for z > 2 m. (See EM .)

2-4 Gauss’s Law

In this section, we use Maxwell’s equations to confirm the

expressions for the electric field implied by Coulomb’s law,

and propose alternative techniques for evaluating electric fields
induced by electric charge. To that end, we restate Eq. (4.1a):

∇ ·D = ρv,

(differential form of Gauss’s law)

(4.26)

which is referred to as the differential form of Gauss’s law.

The adjective “differential” refers to the fact that the diver-

gence operation involves spatial derivatives. As we see shortly,
Eq. (4.26) can be converted to an integral form. When solving

electromagnetic problems, we often go back and forth between

equations in differential and integral form, depending on which
of the two happens to be the more applicable or convenient

to use. To convert Eq. (4.26) into integral form, we multiply

both sides by dυ and evaluate their integrals over an arbitrary
volume υ :

∫

υ
∇ ·D dυ =

∫

υ
ρv dυ = Q. (4.27)

Here, Q is the total charge enclosed in υ . The divergence

theorem, given by Eq. (3.98), states that the volume integral of
the divergence of any vector over a volume υ equals the total

outward flux of that vector through the surface S enclosing υ .

Thus, for the vector D,
∫

υ
∇ ·D dυ =

∫

S
D ·ds. (4.28)

Comparison of Eq. (4.27) with Eq. (4.28) leads to

∫

S
D ·ds = Q.

(integral form of Gauss’s law)

(4.29)

◮ The integral form of Gauss’s law is illustrated dia-
grammatically in Fig. 4-8; for each differential surface

element ds, D ·ds is the electric field flux flowing outward

of υ through ds, and the total flux through surface S

equals the enclosed charge Q. The surface S is called a

Gaussian surface. ◭

The integral form of Gauss’s law can be applied to deter-

mine D due to a single isolated point charge q by enclosing
the latter with a closed, spherical, Gaussian surface S of

arbitrary radius R centered at q (Fig. 4-9). From symmetry

considerations and assuming that q is positive, the direction
of D must be radially outward along the unit vector R̂, and DR,

which is the magnitude of D, must be the same at all points

on S. Thus, at any point on S,

D = R̂DR, (4.30)
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Figure2-8 The integral form of Gauss’s law states that the

outward flux of D through a surface is proportional to the

enclosed charge Q.

Gaussian surface

q

R

D
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Figure2-9 Electric field D due to point charge q.

and ds = R̂ ds. Applying Gauss’s law gives

∫

S
D ·ds =

∫

S
R̂DR · R̂ ds =

∫

S
DR ds = DR(4πR2) = q.

(4.31)

Solving for DR and then inserting the result in Eq. (4.30) gives
the expression for the electric field E induced by an isolated

point charge in a medium with permittivity ε:

E =
D

ε
= R̂

q

4πεR2
(V/m). (4.32)

This is identical with Eq. (4.13) obtained from Coulomb’s law;

after all, Maxwell’s equations incorporate Coulomb’s law. For
this simple case of an isolated point charge, it does not matter

whether Coulomb’s law or Gauss’s law is used to obtain the

expression for E. However, it does matter which approach we
follow when we deal with multiple point charges or continuous

charge distributions. Even though Coulomb’s law can be used

to find E for any specified distribution of charge, Gauss’s law
is easier to apply than Coulomb’s law, but its utility is limited

to symmetrical charge distributions.

◮ Gauss’s law, as given by Eq. (4.29), provides a con-

venient method for determining the flux density D when

the charge distribution possesses symmetry properties that
allow us to infer the variations of the magnitude and

direction of D as a function of spatial location. This

facilitates the integration of D over a cleverly chosen
Gaussian surface. ◭

Because at every point on the surface the direction of ds is

along its outward normal, only the normal component of D

at the surface contributes to the integral in Eq. (4.29). To
successfully apply Gauss’s law, the surface S should be chosen

from symmetry considerations so that, across each subsurface

of S, D is constant in magnitude and its direction is either
normal or purely tangential to the subsurface. These aspects

are illustrated in Example 4-6.

Example2-6: Electric Field of an Infinite
Line Charge

Use Gauss’s law to obtain an expression for E due to an
infinitely long line with uniform charge density ρℓ that resides

along the z axis in free space.

Solution: Since the charge density along the line is uniform,
infinite in extent, and residing along the z axis, symmetry

considerations dictate that D is in the radial r̂ direction and

cannot depend on φ or z. Thus, D = r̂Dr. Therefore, we
construct a finite cylindrical Gaussian surface of radius r

and height h, which is concentric around the line of charge
(Fig.2-10 ). The total charge contained within the cylinder is

Q = ρℓh. Since D is along r̂, the top and bottom surfaces of

the cylinder do not contribute to the surface integral on the
left-hand side of Eq. (4.29); that is, only the curved surface

contributes to the integral. Hence,
∫ h

z=0

∫ 2π

φ=0
r̂Dr · r̂r dφ dz = ρℓh

or

2πhDrr = ρℓh,

which yields

E =
D

ε0

= r̂
Dr

ε0

= r̂
ρℓ

2πε0r
.

(infinite line charge)

(4.33)
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Figure2-10 Gaussian surface around an infinitely long line of

charge (Example2-6).

Note that Eq. ( 2.33) is applicable for any infinite line of charge,

regardless of its location and direction, as long as r̂ is properly
defined as the radial distance vector from the line charge to the

observation point (i.e., r̂ is perpendicular to the line of charge).

Example2-7: Two Infinite Lines of Charge

Figure2-11 depicts the presence of two infinite lines of charge

in free space: one residing in the x–y plane parallel to the x̂ axis

E1 = −y9

E

z

x

y
2 m

ρ
ℓ1

 = 1 (nC/m)

ρ
ℓ2

 = −2 (nC/m)6 m

ˆ

E2 = z6ˆ

r1ˆ

r2ˆ

Figure2-11 Two infinite lines of charge (Example 4-7).

and carrying charge density ρℓ1
= 1 (nC/m), and a second one

residing in the y–z plane parallel to the y axis and carrying a

charge density ρℓ2
= −2 (nC/m). Determine the electric field

at the origin.

Solution: The electric field E is the sum of two electric field

components:

E = E1 + E2,

where E1 and E2 are the electric fields due to line charges
1 and 2, respectively. According to Eq. (4.33), the direction

of the electric field r̂ is perpendicular to the direction of the

line charge and points away from the line of charge (if ρℓ is
positive). Hence, for the first line of charge, ρℓ1

= 1 (nC/m),

r̂1 = −ŷ, r1 = 2, and

E1 =
r̂1ρℓ1

2πε0r1

=
−ŷ 10−9

2π × 1
36π ×10−9×2

= −ŷ 9 V/m.

Similarly, for the second line of charge, ρℓ2
= −2 (nC/m),

r̂2 = −ẑ, r2 = 6, and

E2 =
r̂2ρℓ2

2πε0r2

=
−ẑ(−2)×10−9

2π × 1
36π ×10−9×6

= ẑ 6 V/m.

Hence,

E = E1 + E2 = (−ŷ 9 + ẑ 6) V/m.

Concept Question2-7: Explain Gauss’s law. Under
what circumstances is it useful?

Concept Question2-8: How should one choose a
Gaussian surface?

Exercise2-7: Two infinite lines, each carrying a uniform

charge density ρℓ, reside in free space parallel to the z axis

at x = 1 and x = −1. Determine E at an arbitrary point
along the y axis.

Answer: E = ŷρℓy/
[

πε0(y
2 + 1)

]

. (See EM .)

Exercise 4-8: A thin spherical shell of radius a carries
a uniform surface charge density ρs. Use Gauss’s law to

determine E everywhere in free space.

Answer: E =

{

0 for R < a;

R̂ρsa
2/(εR2) for R > a.

(See EM .)



Exercise2-9: A spherical volume of radius a contains a
uniform volume charge density ρv. Use Gauss’s law to

determine D for (a) R ≤ a and (b) R ≥ a.

Answer: (a) D = R̂ρvR/3,

(b) D = R̂ρva3/(3R2). (See EM .)

2-5 Electric Scalar Potential

The operation of an electric circuit usually is described in
terms of the currents flowing through its branches and the

voltages at its nodes. The voltage difference V between two

points in a circuit represents the amount of work, or potential

energy, required to move a unit charge from one to the other.

◮ The term “voltage” is short for “voltage potential” and

synonymous with electric potential. ◭

Even though when analyzing a circuit we may not consider the

electric fields present in the circuit, it is in fact the existence of

these fields that gives rise to voltage differences across circuit
elements such as resistors or capacitors. The relationship

between the electric field E and the electric potential V is the
subject of this section.

2-5.1 Electric Potential as a Function of Electric
Field

We begin by considering the simple case of a positive charge q

in a uniform electric field E = −ŷE in the −y direction

(Fig.2-12 ). The presence of the field E exerts a force Fe = qE

on the charge in the −y direction. To move the charge along the

positive y direction (against the force Fe), we need to provide

q

y

dy

x

E EE

Fext

Fe

E

Figure2-12 Work done in moving a charge q a distance dy

against the electric field E is dW = qE dy.

an external force Fext to counteract Fe, which requires the
expenditure of energy. To move q without acceleration (at

constant speed), the net force acting on the charge must be

zero, which means that Fext + Fe = 0, or

Fext = −Fe = −qE. (4.34)

The work done (or energy expended) in moving any object a
vector differential distance dl while exerting a force Fext is

dW = Fext ·dl = −qE ·dl (J). (4.35)

Work (or energy) is measured in joules (J). If the charge is

moved a distance dy along ŷ, then

dW = −q(−ŷE) · ŷ dy = qE dy. (4.36)

The differential electric potential energy dW per unit charge
is called the differential electric potential (or differential

voltage) dV . That is,

dV =
dW

q
= −E ·dl (J/C or V). (4.37)

The unit of V is the volt (V) with 1 V = 1 J/C, and since V

is measured in volts, the electric field is expressed in volts per

meter (V/m).
The potential difference corresponding to moving a point

charge from point P1 to point P2 (Fig.2-13 ) is obtained by

integrating Eq. (4.37) along any path between them. That is,

∫ P2

P1

dV = −
∫ P2

P1

E ·dl, (4.38)

or

V21 = V2 −V1 = −
∫ P2

P1

E ·dl, (4.39)

P1 C3

C2

C1
P2

path 1

path 2

path 3

E
E

Figure2-13 In electrostatics, the potential difference between

P2 and P1 is the same irrespective of the path used for calculating

the line integral of the electric field between them.



where V1 and V2 are the electric potentials at points P1 and P2,
respectively. The result of the line integral on the right-hand

side of Eq. (4.39) is independent of the specific integration

path that connects points P1 and P2. This follows immediately
from the law of conservation of energy. To illustrate with an

example, consider a particle in Earth’s gravitational field. If

the particle is raised from a height h1 above Earth’s surface
to height h2, the particle gains potential energy in an amount

proportional to (h2 − h1). If instead we were to first raise the

particle from height h1 to a height h3 greater than h2, thereby
giving it potential energy proportional to (h3 − h1), and then

let it drop back to height h2 by expending an energy amount
proportional to (h3−h2), its net gain in potential energy would

again be proportional to (h2 −h1).
The same principle applies to the electric potential energy W

and to the potential difference (V2−V1). The voltage difference

between two nodes in an electric circuit has the same value

regardless of which path in the circuit we follow between the
nodes. Moreover, Kirchhoff’s voltage law states that the net

voltage drop around a closed loop is zero. If we go from

P1 to P2 by path 1 in Fig. 4-13 and then return from P2 to
P1 by path 2, the right-hand side of Eq. (4.39) becomes a

closed contour, and the left-hand side vanishes. In fact, the line

integral of the electrostatic field E around any closed contour

C is zero:

∫

C
E ·dl = 0. (electrostatics) (4.40)

◮ A vector field whose line integral along any closed path
is zero is called a conservative or an irrotational field.

Hence, the electrostatic field E is conservative. ◭

As we will see later in Chapter 6, if E is a time-varying
function, it is no longer conservative, and its line integral along

a closed path is not necessarily zero.

The conservative property of the electrostatic field can
be deduced from Maxwell’s second equation, Eq. (4.1b). If

∂/∂ t = 0, then

∇×××E = 0. (4.41)

If we take the surface integral of ∇×××E over an open surface S

and then apply Stokes’s theorem expressed by Eq. (3.107) to

convert the surface integral into a line integral, we obtain

∫

S
(∇×××E) ·ds =

∫

C
E ·dl = 0, (4.42)

where C is a closed contour surrounding S. Thus, Eq. (4.41) is

the differential-form equivalent of Eq. (4.40).

We now define what we mean by the electric potential V at
a point in space. Before we do so, however, let us revisit our

electric-circuit analogue. Just as a node in a circuit cannot be

assigned an absolute voltage, a point in space cannot have an
absolute electric potential. The voltage of a node in a circuit is

measured relative to that of a conveniently chosen reference

point to which we have assigned a voltage of zero, which
we call ground. The same principle applies to the electric

potential V . Usually (but not always), the reference point is

chosen to be at infinity. That is, in Eq. (4.39) we assume that
V1 = 0 when P1 is at infinity. Therefore, the electric potential V

at any point P is

V = −
∫ P

∞
E ·dl (V). (4.43)

Example2-8: Computing V from E along
Two Paths

A vector field is said to be conservative if its line integral

between two points is the same—irrespective of the path taken

between them. In a given region of space, the field E is given
by

E = x̂ x2 + ŷ y2 + ẑ z2. (4.44)

(a) Confirm that E is conservative by demonstrating that

∇×E = 0. (b) Compute the potential difference V21 between

points 1 and 2 in Fig. 4-14 following the direct path
between them. (c) Compute V21 by following the path ABCD

between points 1 and 2.

Solution: (a) The given electric field has components
Ex = x2, Ey = y2, and Ez = z2. Applying the curl operator to

E gives

∇×E =

∣

∣

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
∂

∂x

∂

∂y

∂

∂ z

x2 y2 z2

∣

∣

∣

∣

∣

∣

∣

∣

= x̂

(

∂ z2

∂y
− ∂y2

∂ z

)

− ŷ

(

∂ z2

∂x
− ∂x2

∂ z

)

+ ẑ

(

∂y2

∂x
− ∂x2

∂y

)

= x̂(0−0)− ŷ(0−0)+ ẑ(0−0) = 0.

(b) Voltage V21 is given by

V21 = −
∫ P2

P1

E ·dl.
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Figure2-14 Computing V21 along two paths (Example 4-8).

The straight-line path resides in the x–y plane, so it is described
by the linear form y = ax + b. At point 1, x1 = 1 and y1 = −2.

Hence,

−2 = a + b.

Similarly, at point 2, x2 = 3 and y2 = 2, so

2 = 3a + b.

The two equations lead to a = 2, b = −4, and

y = 2x−4. (4.45)

Since path P1–P2 is entirely in the x–y plane, we can set z = 0
in the expression for E. Also, we can use the relation given by

Eq. (4.45) to reduce E to a single variable:

E = x̂ x2 + ŷ y2 + ẑ z2
∣

∣

z=0 and y=2x−4
= x̂ x2 + ŷ(2x−4)2.

(4.46)
In general,

dl = x̂ dx + ŷ dy + ẑ dz.

In the x–y plane, dz = 0, and along the straight-line path given
by y = 2x−4,

dy = 2 dx. (4.47)

Hence,

dl = x̂ dx + ŷ 2 dx. (4.48)

The potential difference is then

V21 = −
∫ P2

P1

E ·dl

= −
∫ x=3

x=1
[x̂ x2 + ŷ(2x−4)2] · [x̂ dx + ŷ 2 dx]

= −
∫ 3

x=1
[x2 + 2(2x−4)2] dx

= −
∫ 3

x=1
(9x2 −32x + 32) dx = −14 (V). (4.49)

(c) Path ABCD in Fig. 4-14 consists of three segments.

A to B:

E = x̂ x2 + ŷ y2 + ẑ z2
∣

∣

x=1, z=0
= x̂ 1 + ŷ y2, (4.50a)

and

dl = ŷ dy. (4.50b)

B to C:

E = x̂ x2 + ŷ y2 + ẑ z2
∣

∣

y=0, z=0
= x̂ x2, (4.51a)

and

dl = x̂ dx. (4.51b)

C to D:

E = x̂ x2 + ŷ y2 + ẑ z2
∣

∣

x=3, z=0
= x̂ 9 + ŷ y2, (4.52a)

and

dl = ŷ dy. (4.52b)

Hence,

V21 = −
∫ P2

P1

E ·dl

= −
[

∫ B@x=1, y=0

A@x=1, y=−2
(x̂ 1 + ŷ y2) · ŷ dy

+

∫ C@x=3, y=0

B@x=1, y=0
x̂ x2 · x̂ dx

+

∫ D@x=3, y=2

C@x=3, y=0
(x̂ 9 + ŷ y2) · ŷ dy

]

= −
[

y3

3

∣

∣

∣

∣

0

−2

+
x3

3

∣

∣

∣

∣

3

1

+
y3

3

∣

∣

∣

∣

2

0

]

= −
[

+
8

3
+

27

3
− 1

3
+

8

3

]

= −14 (V), (4.53)

which is identical with the result given by Eq. (4.49) for
the line integral along the straight-line path between points 1

and 2.



2-5.2 Electric Potential Due to Point Charges

The electric field due to a point charge q located at the origin

is given by Eq. (4.32) as

E = R̂
q

4πεR2
(V/m). (4.54)

The field is radially directed and decays quadratically with the

distance R from the observer to the charge.
As was stated earlier, the choice of integration path between

the end points in Eq. (4.43) is arbitrary. Hence, we can

conveniently choose the path to be along the radial direction R̂,
in which case dl = R̂ dR and

V = −
∫ R

∞

(

R̂
q

4πεR2

)

· R̂ dR =
q

4πεR
(V). (4.55)

If the charge q is at a location other than the origin, say at

position vector R1, then V at observation position vector R

becomes

V =
q

4πε|R−R1|
(V), (4.56)

where |R−R1| is the distance between the observation point

and the location of the charge q. The principle of superposition

applied previously to the electric field E also applies to
the electric potential V . Hence, for N discrete point charges

q1,q2, . . . ,qN residing at position vectors R1,R2, . . . ,RN , the

electric potential is

V =
1

4πε

N

∑
i=1

qi

|R−Ri|
(V). (4.57)

2-5.3 Electric Potential Due to Continuous
Distributions

To obtain expressions for the electric potential V due to

continuous charge distributions over a volume υ ′, across a
surface S ′, or along a line l′, we (1) replace qi in Eq. (4.57)

with ρv dυ ′, ρs ds′, and ρℓ dl′, respectively; (2) convert the

summation into an integration; and (3) define R′ = |R−Ri| as
the distance between the integration point and the observation

point. These steps lead to the following expressions:

V =
1

4πε

∫

υ ′

ρv

R′ dυ ′ (volume distribution),

V =
1

4πε

∫

S′

ρs

R′ ds′ (surface distribution),

V =
1

4πε

∫

l′

ρℓ

R′ dl′ (line distribution).

(4.58a)

(4.58b)

(4.58c)

2-5.4 Electric Field as a Function of Electric
Potential

In Section 4-5.1, we expressed V in terms of a line inte-
gral over E. Now we explore the inverse relationship by

reexamining Eq. (4.37):

dV = −E ·dl. (4.59)

For a scalar function V , Eq. (3.73) gives

dV = ∇V ·dl, (4.60)

where ∇V is the gradient of V . Comparison of Eq. (4.59) with

Eq. (4.60) leads to

E = −∇V . (4.61)

◮ This differential relationship between V and E allows

us to determine E for any charge distribution by first

calculating V and then taking the negative gradient of V

to find E. ◭

The expressions for V , given by Eqs. (4.57) to (4.58c), involve

scalar sums and scalar integrals, and as such are usually
much easier to evaluate than the vector sums and integrals

in the expressions for E derived in Section 4-3 on the basis

of Coulomb’s law. Thus, even though the electric potential
approach for finding E is a two-step process, it is conceptually

and computationally simpler to apply than the direct method

based on Coulomb’s law.

Example2-9: Electric Field of an Electric Dipole

An electric dipole consists of two point charges of equal
magnitude but opposite polarity separated by a distance d

(Fig. 4-15(a)). Determine V and E at any point P given that

P is at a distance R ≫ d from the dipole center and the dipole
resides in free space.

Solution: To simplify the derivation, we align the dipole

along the z axis and center it at the origin (Fig. 4-15(a)). For the
two charges shown in Fig. 4-15(a), application of Eq. (4.57)

gives

V =
1

4πε0

(

q

R1

+
−q

R2

)

=
q

4πε0

(

R2 −R1

R1R2

)

.

Since d ≪ R, the lines labeled R1 and R2 in Fig. 4-15(a)

are approximately parallel to each other, in which case the

following approximations apply:

R2 −R1 ≈ d cosθ , R1R2 ≈ R2.



(a) Electric dipole

(b) Electric-field pattern
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Figure2-15 Electric dipole with dipole moment p = qd

(Example 4-9).

Hence,

V =
qd cosθ

4πε0R2
. (4.62)

To generalize this result to an arbitrarily oriented dipole, note

that the numerator of Eq. (4.62) can be expressed as the dot

product of qd (where d is the distance vector from −q to +q)
and the unit vector R̂ pointing from the center of the dipole

toward the observation point P. That is,

qd cosθ = qd· R̂ = p · R̂, (4.63)

where p = qd is called the dipole moment. Using Eq. (4.63) in
Eq. (4.62) then gives

V =
p · R̂

4πε0R2
(electric dipole). (4.64)

In spherical coordinates, Eq. (4.61) is given by

E = −∇V = −
(

R̂
∂V

∂R
+ θ̂θθ

1

R

∂V

∂θ
+ φ̂φφ

1

Rsinθ

∂V

∂φ

)

, (4.65)

where we have used the expression for ∇V in spherical
coordinates given in Appendix C. Upon taking the derivatives

of the expression for V given by Eq. (4.62) with respect to R

and θ and then substituting the results in Eq. (4.65), we obtain

E =
qd

4πε0R3
(R̂ 2cosθ + θ̂θθsinθ ) (V/m). (4.66)

We stress that the expressions for V and E given by Eqs. (4.64)

and (4.66) apply only when R ≫ d. To compute V and E

at points in the vicinity of the two dipole charges, it is

necessary to perform all calculations without resorting to the

far-distance approximations that led to Eq. (4.62). Such an
exact calculation for E leads to the field pattern shown in

Fig.2-15(b) .

2-5.5 Poisson’s Equation

With D = εE, the differential form of Gauss’s law given by

Eq. (4.26) may be cast as

∇ ·E =
ρv

ε
. (4.67)

Inserting Eq. (4.61) in Eq. (4.67) gives

∇ · (∇V ) = −ρv

ε
. (4.68)

Given Eq. (3.110) for the Laplacian of a scalar function V ,

∇2V = ∇ · (∇V) =
∂ 2V

∂x2
+

∂ 2V

∂y2
+

∂ 2V

∂ z2
, (4.69)

Eq. (4.68) can be cast in the abbreviated form

∇2V = −ρv

ε
(Poisson’s equation). (4.70)

This is known as Poisson’s equation. For a volume υ ′ con-

taining a volume charge density distribution ρv, the solution

for V derived previously and expressed by Eq. (4.58a) as

V =
1

4πε

∫

υ ′

ρv

R′ dυ ′ (4.71)

satisfies Eq. (4.70). If the medium under consideration con-
tains no charges, Eq. (4.70) reduces to

∇2V = 0 (Laplace’s equation), (4.72)



and it is then referred to as Laplace’s equation. Poisson’s and
Laplace’s equations are useful for determining the electrostatic

potential V in regions with boundaries on which V is known,

such as the region between the plates of a capacitor with a
specified voltage difference across it.

Concept Question 4-9: What is a conservative field?

Concept Question 4-10: Why is the electric potential

at a point in space always defined relative to the potential

at some reference point?

Concept Question 4-11: Explain why Eq. (4.40) is a
mathematical statement of Kirchhoff’s voltage law.

Concept Question 4-12: Why is it usually easier to

compute V for a given charge distribution and then find
E using E =−∇V than to compute E directly by applying

Coulomb’s law?

Concept Question 4-13: What is an electric dipole?

Exercise 4-10: Determine the electric potential at the

origin due to four 20 µC charges residing in free space
at the corners of a 2 m× 2 m square centered about the

origin in the x–y plane.

Answer: V =
√

2×10−5/(πε0) (V). (See EM .)

Exercise 4-11: A spherical shell of radius a has a uniform

surface charge density ρs. Determine (a) the electric
potential and (b) the electric field with both at the center

of the shell.

Answer: (a) V = ρsa/ε (V), (b) E = 0. (See EM .)

2-6 Conductors

The electromagnetic constitutive parameters of a material
medium are its electrical permittivity ε , magnetic permeabil-

ity µ , and conductivity σ . A material is said to be homoge-

neous if its constitutive parameters do not vary from point to
point, and isotropic if they are independent of direction. Most

materials are isotropic, but some crystals are not. Throughout

this book, all materials are assumed to be homogeneous
and isotropic. This section is concerned with σ , Section 4-7

examines ε , and discussion of µ is deferred to Chapter 5.

◮ The conductivity of a material is a measure of how

easily electrons can travel through the material under the
influence of an externally applied electric field. ◭

Materials are classified as conductors (metals) or dielectrics
(insulators) according to the magnitudes of their conductiv-

ities. A conductor has a large number of loosely attached

electrons in the outermost shells of its atoms. In the absence
of an external electric field, these free electrons move in

random directions and with varying speeds. Their random
motion produces zero average current through the conductor.

Upon applying an external electric field, however, the electrons

migrate from one atom to the next in the direction opposite
that of the external field. Their movement gives rise to a

conduction current density

J = σE (A/m2) (Ohm’s law), (4.73)

where σ is the material’s conductivity with units of siemen per

meter (S/m).
In yet other materials, called dielectrics, the electrons are

tightly bound to the atoms—so much so that it is very difficult

to detach them under the influence of an electric field. Con-
sequently, no significant conduction current can flow through

them.

◮ A perfect dielectric is a material with σ = 0. In

contrast, a perfect conductor is a material with σ = ∞.
Some materials, called superconductors, exhibit such a

behavior. ◭

The conductivity σ of most metals is in the range from 106

to 107 S/m when compared with 10−10 to 10−17 S/m for good

insulators (Table 4-1 on p. 194). A class of materials called
semiconductors allow for conduction currents even though

their conductivities are much smaller than those of metals.

The conductivity of pure germanium, for example, is 2.2 S/m.
Tabulated values of σ at room temperature (20 ◦C) are given

in Appendix B for some common materials, and a subset is

reproduced in Table 4-1.

◮ The conductivity of a material depends on several fac-

tors, including temperature and the presence of impurities.

In general, σ of metals increases with decreasing temper-
ature. Most superconductors operate in the neighborhood

of absolute zero. ◭



Table 4-1 Conductivity of some common materials at 20 ◦C.

Material Conductivity, σ (S/m)

Conductors

Silver 6.2×107

Copper 5.8×107

Gold 4.1×107

Aluminum 3.5×107

Iron 107

Mercury 106

Carbon 3×104

Semiconductors

Pure germanium 2.2

Pure silicon 4.4×10−4

Insulators

Glass 10−12

Paraffin 10−15

Mica 10−15

Fused quartz 10−17

Concept Question 4-14: What are the electromagnetic
constitutive parameters of a material?

Concept Question 4-15: What classifies a material as

a conductor, a semiconductor, or a dielectric? What is a

superconductor?

Concept Question 4-16: What is the conductivity of a

perfect dielectric?

2-6.1 Drift Velocity

The drift velocity ue of electrons in a conducting material is

related to the externally applied electric field E through

ue = −µeE (m/s), (4.74a)

where µe is a material property call the electron mobility with

units of (m2/V·s). In a semiconductor, current flow is due to
the movement of both electrons and holes, and since holes are

positive-charge carriers, the hole drift velocity uh is in the same

direction as E,

uh = µhE (m/s), (4.74b)

where µh is the hole mobility. The mobility accounts for the

effective mass of a charged particle and the average distance

over which the applied electric field can accelerate it before
it is stopped by colliding with an atom and then starts accel-

erating all over again. From Eq. (4.11), the current density in

a medium containing a volume density ρv of charges moving
with velocity u is J = ρvu. In the most general case, the current

density consists of a component Je due to electrons and a

component Jh due to holes. Thus, the total conduction current
density is

J = Je + Jh = ρveue + ρvhuh (A/m2), (4.75)

where ρve = −Nee and ρvh = Nhe with Ne and Nh being the

number of free electrons and the number of free holes per unit
volume and e = 1.6×10−19 C is the absolute charge of a single

hole or electron. Use of Eqs. (4.74a) and (4.74b) gives

J = (−ρveµe + ρvhµh)E = σE, (4.76)

where the quantity inside the parentheses is defined as the
conductivity of the material, σ . Thus,

σ = −ρveµe + ρvhµh = (Neµe + Nhµh)e (S/m),

(semiconductor)

(4.77a)

and its unit is siemens per meter (S/m). For a good conductor,
Nhµh ≪ Neµe, and Eq. (4.77a) reduces to

σ = −ρveµe = Neµee (S/m).

(good conductor)

(4.77b)

◮ In view of Eq. (4.76), in a perfect dielectric with σ = 0,

J = 0 regardless of E. Similarly, in a perfect conductor
with σ = ∞, E = J/σ = 0 regardless of J. ◭

That is,

Perfect dielectric: J = 0,

Perfect conductor: E = 0.

Because σ is on the order of 106 S/m for most metals, such as

silver, copper, gold, and aluminum (Table 4-1), it is common

practice to treat them as perfect conductors and to set E = 0
inside them.

A perfect conductor is an equipotential medium, meaning

that the electric potential is the same at every point in the
conductor. This property follows from the fact that V21, which

is the voltage difference between two points in the conductor,



equals the line integral of E between them, as indicated by

Eq. (4.39). Since E = 0 everywhere in the perfect conductor,
the voltage difference V21 = 0. The fact that the conductor is

an equipotential medium, however, does not necessarily imply

that the potential difference between the conductor and some
other conductor is zero. Each conductor is an equipotential

medium, but the presence of different distributions of charges
on their two surfaces can generate a potential difference

between them.

Example2-10: Conduction Current in a
Copper Wire

A 2-mm diameter copper wire with conductivity of

5.8×107 S/m and electron mobility of 0.0032 (m2/V·s)
is subjected to an electric field of 20 (mV/m). Find (a) the

volume charge density of the free electrons, (b) the current

density, (c) the current flowing in the wire, (d) the electron

drift velocity, and (e) the volume density of the free electrons.

Solution: (a)

ρve = − σ

µe

= −5.8×107

0.0032
= −1.81×1010 (C/m3).

(b)

J = σE = 5.8×107×20×10−3 = 1.16×106 (A/m2).

(c)

I = JA

= J

(

πd2

4

)

= 1.16×106

(

π ×4×10−6

4

)

= 3.64 A.

(d)

ue = −µeE = −0.0032×20×10−3 = −6.4×10−5 m/s.

The minus sign indicates that ue is in the opposite direction
of E.

(e)

Ne = −ρve

e
=

1.81×1010

1.6×10−19
= 1.13×1029 electrons/m3.

2-6.2 Resistance

To demonstrate the utility of the point form of Ohm’s law,

we apply it to derive an expression for the resistance R of a
conductor of length l and uniform cross section A, as shown

in Fig. 4-16. The conductor axis is along the x direction and

extends between points x1 and x2, with l = x2−x1. A voltage V

applied across the conductor terminals establishes an electric

field E = x̂Ex; the direction of E is from the point with

higher potential (point 1 in Fig. 4-16) to the point with lower

x1 x2l

1 2I I

A

J E

+ –

V

y

x

Figure2-16 Linear resistor of cross section A and length l

connected to a dc voltage source V .

potential (point 2). The relation between V and Ex is obtained
by applying Eq. (4.39):

V = V1 −V2 = −
∫ x1

x2

E ·dl = −
∫ x1

x2

x̂Ex · x̂ dl = Exl (V).

(4.78)

Using Eq. (4.73), the current flowing through the cross
section A at x2 is

I =

∫

A
J ·ds =

∫

A
σE ·ds = σExA (A). (4.79)

From R = V/I, the ratio of Eq. (4.78) to Eq. (4.79) gives

R =
l

σA
(Ω). (4.80)

We now generalize our result for R to any resistor of
arbitrary shape by noting that the voltage V across the resistor

is equal to the line integral of E over a path l between two

specified points and the current I is equal to the flux of J

through the surface S of the resistor. Thus,

R =
V

I
=

−
∫

l
E ·dl

∫

S
J ·ds

=
−

∫

l
E ·dl

∫

S
σE ·ds

. (4.81)

The reciprocal of R is called the conductance G, and the unit
of G is (Ω−1) or siemens (S). For the linear resistor,

G =
1

R
=

σA

l
(S). (4.82)



Example2-11: Conductance of Coaxial Cable

The radii of the inner and outer conductors of a coaxial cable

of length l are a and b, respectively (Fig. 4-17). The insulation

material has conductivity σ . Obtain an expression for G′,
which is the conductance per unit length of the insulation layer.

Solution: Let I be the total current flowing radially (along r̂)
from the inner conductor to the outer conductor through the

insulation material. At any radial distance r from the axis of
the center conductor, the area through which the current flows

is A = 2πrl. Hence,

J = r̂
I

A
= r̂

I

2πrl
, (4.83)

and from J = σE,

E = r̂
I

2πσrl
. (4.84)
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Figure 4-17 Coaxial cable of Example 4-11.

In a resistor, the current flows from higher electric potential

to lower potential. Hence, if J is in the r̂ direction, the inner

conductor must be at a potential higher than that at the outer
conductor. Accordingly, the voltage difference between the

conductors is

Vab = −
∫ a

b
E ·dl = −

∫ a

b

I

2πσ l

r̂ · r̂ dr

r
=

I

2πσ l
ln

(

b

a

)

.

(4.85)

The conductance per unit length is then

G′ =
G

l
=

1

Rl
=

I

Vabl
=

2πσ

ln(b/a)
(S/m). (4.86)

4-6.3 Joule’s Law

We now consider the power dissipated in a conducting medium

in the presence of an electrostatic field E. The medium

contains free electrons and holes with volume charge densi-
ties ρve and ρvh, respectively. The electron and hole charge

contained in an elemental volume ∆υ is qe = ρve ∆υ and

qh = ρvh ∆υ , respectively. The electric forces acting on qe

and qh are Fe = qeE = ρveE ∆υ and Fh = qhE = ρvhE ∆υ .

The work (energy) expended by the electric field in moving qe

a differential distance ∆le and moving qh a distance ∆lh is

∆W = Fe ·∆le + Fh ·∆lh. (4.87)

Power P is measured in watts (W) and is defined as the time

rate of change of energy. The power corresponding to ∆W is

∆P =
∆W

∆t
= Fe · ∆le

∆t
+ Fh · ∆lh

∆t

= Fe ·ue + Fh ·uh

= (ρveE ·ue + ρvhE ·uh) ∆υ = E ·J ∆υ , (4.88)

where ue = ∆le/∆t and uh = ∆lh/∆t are the electron and

hole drift velocities, respectively. Equation (4.75) was used

in the last step of the derivation leading to Eq. (4.88). For a
volume υ , the total dissipated power is

P =

∫

υ
E ·J dυ (W) (Joule’s law), (4.89)

and in view of Eq. (4.73),

P =
∫

υ
σ |E|2 dυ (W). (4.90)

Equation (4.89) is a mathematical statement of Joule’s law.

For the resistor example considered earlier, |E| = Ex and its
volume is υ = lA. Separating the volume integral in Eq. (4.90)

into a product of a surface integral over A and a line integral

over l, we have

P =

∫

υ
σ |E|2 dυ =

∫

A
σEx ds

∫

l
Ex dl

= (σExA)(Exl) = IV (W), (4.91)

where use was made of Eq. (4.78) for the voltage V and

Eq. (4.79) for the current I. With V = IR, we obtain the familiar

expression
P = I2R (W). (4.92)

Concept Question 4-17: What is the fundamental dif-

ference between an insulator, a semiconductor, and a
conductor?

Concept Question 4-18: Show that the power dissi-

pated in the coaxial cable of Fig. 4-17 is

P =
I2 ln(b/a)

2πσ l
.

Exercise 4-14: A 50-m long copper wire has a circular

cross section with radius r = 2 cm. Given that the con-

ductivity of copper is 5.8× 107 S/m, determine (a) the
resistance R of the wire and (b) the power dissipated in

the wire if the voltage across its length is 1.5 mV.

Answer: (a) R = 6.9×10−4 Ω, (b) P = 3.3 mW. (See EM .)

Exercise 4-15: Repeat part (b) of Exercise 4-14 by apply-

ing Eq. (4.90). (See EM .)

4-7 Dielectrics

The fundamental difference between a conductor and a di-

electric is that electrons in the outermost atomic shells of
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Figure 4-18 In the absence of an external electric field E, the

center of the electron cloud is co-located with the center of the

nucleus, but when a field is applied, the two centers are separated

by a distance d.

a conductor are only weakly tied to atoms and hence can

freely migrate through the material, whereas in a dielectric
they are strongly bound to the atom. In the absence of an

electric field, the electrons in nonpolar molecules form a
symmetrical cloud around the nucleus, with the center of the

cloud coinciding with the nucleus (Fig. 4-18(a)). The electric

field generated by the positively charged nucleus attracts and
holds the electron cloud around it, and the mutual repulsion of

the electron clouds of adjacent atoms shapes its form. When

a conductor is subjected to an externally applied electric field,
the most loosely bound electrons in each atom can jump from

one atom to the next, thereby setting up an electric current.

In a dielectric, however, an externally applied electric field E

cannot effect mass migration of charges since none are able to

move freely. Instead, E will polarize the atoms or molecules

in the material by moving the center of the electron cloud
away from the nucleus (Fig.2-18(b) ). The polarized atom or

molecule may be represented by an electric dipole consisting
of charges +q in the nucleus and −q at the center of the

electron cloud (Fig.2-18(c) ). Each such dipole sets up a small

electric field pointing from the positively charged nucleus
to the center of the equally but negatively charged electron

cloud. This induced electric field, called a polarization field,

generally is weaker than and opposite in direction to E.
Consequently, the net electric field present in the dielectric

material is smaller than E. At the microscopic level, each
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Figure 4-19 A dielectric medium polarized by an external

electric field E.

dipole exhibits a dipole moment similar to that described in
Example 4-9. Within a block of dielectric material subject to

a uniform external field, the dipoles align themselves linearly,
as shown in Fig. 4-19. Along the upper and lower edges of the

material, the dipole arrangement exhibits positive and negative

surface charge densities, respectively.
It is important to stress that this description applies to

only nonpolar molecules that do not have permanent dipole

moments. Nonpolar molecules become polarized only when
an external electric field is applied; when the field is removed,

the molecules return to their original unpolarized state.

In polar materials such as water, the molecules possess built-
in permanent dipole moments that are randomly oriented in

the absence of an applied electric field, and owing to their

random orientations, the dipoles of polar materials produce
no net macroscopic dipole moment (at the macroscopic scale,

each point in the material represents a small volume containing
thousands of molecules). Under the influence of an applied

field, the permanent dipoles tend to align themselves along the

direction of the electric field in a manner similar to that shown
in Fig.2-19 for nonpolar materials.

2-7.1 Polarization Field

In free space D = ε0E, the presence of microscopic dipoles in

a dielectric material alters that relationship to

D = ε0E+ P, (4.93)



where P, called the electric polarization field, accounts for
the polarization properties of the material. The polarization

field is produced by the electric field E and depends on the

material properties. A dielectric medium is said to be linear
if the magnitude of the induced polarization field P is directly

proportional to the magnitude of E, and isotropic if P and E are

in the same direction. Some crystals allow more polarization
to take place along certain directions, such as the crystal

axes, than along others. In such anisotropic dielectrics, E

and P may have different directions. A medium is said to be
homogeneous if its constitutive parameters (ε , µ , and σ ) are

constant throughout the medium. Our present treatment will be
limited to media that are linear, isotropic, and homogeneous.

For such media, P is directly proportional to E and is expressed

as
P = ε0χeE, (4.94)

where χe is called the electric susceptibility of the material.

Inserting Eq. (4.94) into Eq. (4.93), we have

D = ε0E+ ε0χeE = ε0(1 + χe)E = εE, (4.95)

which defines the permittivity ε of the material as

ε = ε0(1 + χe). (4.96)

It is often convenient to characterize the permittivity of a
material relative to that of free space, ε0; this is accommodated

by the relative permittivity εr = ε/ε0. Values of εr are listed in
Table 4-2 for a few common materials, and a longer list is

given in Appendix B. In free space εr = 1, and for most con-

ductors, εr ≈ 1. The dielectric constant of air is approximately
1.0006 at sea level and decreases toward unity with increasing

altitude. Except in some special circumstances, such as when

calculating electromagnetic wave refraction (bending) through
the atmosphere over long distances, air can be treated as if it

were free space.

2-7.2 Dielectric Breakdown

The preceding dielectric–polarization model presumes that the

magnitude of E does not exceed a certain critical value, which
is known as the dielectric strength Eds of the material. Beyond

this, electrons will detach from the molecules and accelerate

through the material in the form of a conduction current. When
this happens, sparking can occur, and the dielectric material

can sustain permanent damage due to electron collisions with
the molecular structure. This abrupt change in behavior is

called dielectric breakdown.

◮ The dielectric strength Eds is the largest magnitude of E

that the material can sustain without breakdown. ◭

Dielectric breakdown can occur in gases, liquids, and solids.
The dielectric strength Eds depends on the material composi-

tion, as well as other factors such as temperature and humidity.

For air, Eds is roughly 3 (MV/m); for glass, 25 to 40 (MV/m);
and for mica, 200 (MV/m) (see Table 4-2).

A charged thundercloud at electric potential V relative to the

ground induces an electric field E = V/d in the air beneath it,
where d is the height of the cloud base above the ground. If

V is sufficiently large so that E exceeds the dielectric strength

of air, ionization occurs and a lightning discharge follows. The
breakdown voltageVbr of a parallel-plate capacitor is discussed

in Example 4-12.

Example2-12: Dielectric Breakdown

In a parallel-plate capacitor with a separation d between the

conducting plates, the electric field E in the dielectric material

Table2-2 Relative permittivity (dielectric constant) and dielectric strength of common materials.

Material Relative Permittivity, εr Dielectric Strength, Eds (MV/m)

Air (at sea level) 1.0006 3

Petroleum oil 2.1 12

Polystyrene 2.6 20

Glass 4.5–10 25–40

Quartz 3.8–5 30

Bakelite 5 20

Mica 5.4–6 200

Note: ε = εrε0 and ε0 = 8.854×10−12 F/m.



separating the two plates is related to the voltage V between
the two plates by

E =
V

d
.

The breakdown voltage Vbr corresponds to the value of V at

which E = Eds, where Eds is the dielectric strength of the
material contained between the plates. That is,

Vbr = Edsd.

If V exceeds Vbr, the electric charges will “spark” their way
between the two plates.

A thin capacitor filled with quartz operates at 60 V. If

d = 0.01 mm, what is the breakdown voltage, and how does
it compare with the operating voltage?

Solution: From Table2-2 , Eds = 30× 106 V/m for quartz.

Hence, the breakdown voltage is

Vbr = Edsd = 30×106×10−5 = 300 V,

which is much higher than the operating voltage of 60 V.

Therefore, the capacitor should experience no issues with

dielectric breakdown.

Concept Question 4-19: What is a polar material? A

nonpolar material?

Concept Question 4-20: Do D and E always point in

the same direction? If not, when do they not?

Concept Question 4-21: What happens when dielectric
breakdown occurs?

2-8 Electric Boundary Conditions

◮ A vector field is said to be spatially continuous if it
does not exhibit abrupt changes in either magnitude or

direction as a function of position. ◭

Even though the electric field may be continuous in adjoin-

ing dissimilar media, it may well be discontinuous at the
boundary between them. Boundary conditions specify how the

components of fields tangential and normal to an interface
between two media relate across the interface Here we derive

a general set of boundary conditions for E, D, and J that is

applicable at the interface between any two dissimilar media—
be they two dielectrics or a conductor and a dielectric. Of

course, any of the dielectrics may be free space. Even though

these boundary conditions are derived assuming electrostatic
conditions, they remain valid for time-varying electric fields

as well. Figure2-20 shows an interface between medium 1

with permittivity ε1 and medium 2 with permittivity ε2. In
the general case, the interface may contain a surface charge

density ρs (unrelated to the dielectric polarization charge

density).
To derive the boundary conditions for the tangential com-

ponents of E and D, we consider the closed rectangular loop
abcda shown in Fig.2-20 and apply the conservative property

of the electric field expressed by Eq. (4.40), which states that

the line integral of the electrostatic field around a closed path
is always zero. By letting ∆h → 0, the contributions to the line

integral by segments bc and da vanish. Hence,

∫

C
E ·dl =

∫ b

a
E1 · ℓ̂ℓℓ1 dl +

∫ d

c
E2 · ℓ̂ℓℓ2 dl = 0, (4.97)
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Figure2-20 Interface between two dielectric media.



where ℓ̂ℓℓ1 and ℓ̂ℓℓ2 are unit vectors along segments ab and cd and
E1 and E2 are the electric fields in media 1 and 2. Next, we

decompose E1 and E2 into components tangential and normal

to the boundary (Fig.2-20 ),

E1 = E1t + E1n, (4.98a)

E2 = E2t + E2n. (4.98b)

Noting that ℓ̂ℓℓ1 = −ℓ̂ℓℓ2, it follows that

(E1 −E2) · ℓ̂ℓℓ1 = 0. (4.99)

In other words, the component of E1 along ℓ̂ℓℓ1 equals that of E2

along ℓ̂ℓℓ1, for all ℓ̂ℓℓ1 tangential to the boundary. Hence,

E1t = E2t (V/m). (4.100)

◮ Thus, the tangential component of the electric field

is continuous across the boundary between any two

media. ◭

Upon decomposing D1 and D2 into tangential and normal

components (in the manner of Eq. (4.98)) and noting that

D1t = ε1E1t and D2t = ε2E2t, the boundary condition on the
tangential component of the electric flux density is

D1t

ε1

=
D2t

ε2

. (4.101)

Next, we apply Gauss’s law, as expressed by Eq. (4.29),
to determine boundary conditions on the normal components

of E and D. According to Gauss’s law, the total outward flux
of D through the three surfaces of the small cylinder shown in

Fig.2-20 must equal the total charge enclosed in the cylinder.

By letting the cylinder’s height ∆h → 0, the contribution to the
total flux through the side surface goes to zero. Also, even if

each of the two media happens to contain free charge densities,

the only charge remaining in the collapsed cylinder is that
distributed on the boundary. Thus, Q = ρs ∆s, and

∫

S
D ·ds =

∫

top

D1 · n̂2 ds+

∫

bottom

D2 · n̂1 ds

= ρs ∆s, (4.102)

where n̂1 and n̂2 are the outward normal unit vectors of
the bottom and top surfaces, respectively. It is important to

remember that the normal unit vector at the surface of any

medium is always defined to be in the outward direction away
from that medium. Since n̂1 = −n̂2, Eq. (4.102) simplifies to

n̂2 ·(D1 −D2) = ρs (C/m2). (4.103)

If D1n and D2n denote as the normal components of D1 and D2

along n̂2, we have

D1n −D2n = ρs (C/m2). (4.104)

◮ The normal component of D changes abruptly at a

charged boundary between two different media in an

amount equal to the surface charge density. If no charge
exists at the boundary, then Dn is continuous across the

boundary. ◭

The corresponding boundary condition for E is

n̂2 ·(ε1E1 − ε2E2) = ρs, (4.105a)

or equivalently

ε1E1n − ε2E2n = ρs. (4.105b)

In summary, (1) the conservative property of E,

∇×××E = 0

∫

C
E ·dl = 0, (4.106)

led to the result that E has a continuous tangential component

across a boundary, and (2) the divergence property of D,

∇ ·D = ρv

∫

S
D ·ds = Q, (4.107)

led to the result that the normal component of D changes by ρs

across the boundary. A summary of the conditions that apply
at the boundary between different types of media is given in

Table 4-3.



Table2-3 Boundary conditions for the electric fields.

Field Component Any Two Media
Medium 1

Dielectric ε1

Medium 2

Conductor

Tangential E E1t = E2t E1t = E2t = 0

Tangential D D1t/ε1 = D2t/ε2 D1t = D2t = 0

Normal E ε1E1n − ε2E2n = ρs E1n = ρs/ε1 E2n = 0

Normal D D1n −D2n = ρs D1n = ρs D2n = 0

Notes: (1) ρs is the surface charge density at the boundary; (2) normal components of

E1, D1, E2, and D2 are along n̂2, which is the outward normal unit vector of medium 2.

Example2-13: Application of Boundary
Conditions

The x–y plane is a charge-free boundary separating two dielec-
tric media with permittivities ε1 and ε2, as shown in Fig.2-21 .

If the electric field in medium 1 is

E1x + ŷE1y + ẑE1z,

and E1 = x̂, find (a) the electric field E2 in medium 2 and

(b) the angles θ1 and θ2.

E1z

E1t

E2t

E2z

E1

E2 θ2

ε1

ε2

θ1

z

x–y plane

Figure 4-21 Application of boundary conditions at the inter-

face between two dielectric media (Example 4-13).

Solution: (a) Let E2 = x̂E2x + ŷE2y + ẑE2z. Our task is to

find the components of E2 in terms of the given components

of E1. The normal to the boundary is ẑ. Hence, the x and y

components of the fields are tangential to the boundary and
the z components are normal to the boundary. At a charge-

free interface, the tangential components of E and the normal
components of D are continuous. Consequently,

E2x = E1x, E2y = E1y,

and

D2z = D1z or ε2E2z = ε1E1z.

Hence,

E2 = x̂E1x + ŷE1y + ẑ
ε1

ε2

E1z. (4.108)

(b) The tangential components of E1 and E2 are

E1t =
√

E2
1x + E2

1y and E2t =
√

E2
2x + E2

2y .

The angles θ1 and θ2 are then given by

tanθ1 =
E1t

E1z

=

√

E2
1x + E2

1y

E1z

,

tanθ2 =
E2t

E2z

=

√

E2
2x + E2

2y

E2z

=

√

E2
1x + E2

1y

(ε1/ε2)E1z

,

and the two angles are related by

tanθ2

tanθ1

=
ε2

ε1

. (4.109)



Exercise2-16: Find E1 in Fig. 4-21 if

E2 = x̂2− ŷ3 + ẑ3 (V/m),

ε1 = 2ε0,

ε2 = 8ε0,

and the boundary is charge-free.

Answer: E1 = x̂2− ŷ3 + ẑ12 (V/m). (See EM .)

Exercise2-17: Repeat Exercise 4.16 for a boundary with

surface charge density ρs = 3.54×10−11 (C/m2).

Answer: E1 = x̂2− ŷ3 + ẑ14 (V/m). (See EM .)

2-8.1 Dielectric-Conductor Boundary

Consider the case when medium 1 is a dielectric and medium 2
is a perfect conductor. In a perfect conductor, because electric

fields and fluxes vanish, it follows that E2 = D2 = 0, which

implies that components of E2 and D2 tangential and normal
to the interface are zero. Consequently, from Eq. (4.100) and

Eq. (4.104), the fields in the dielectric medium at the boundary

with the conductor satisfy

E1t = D1t = 0, (4.110a)

D1n = ε1E1n = ρs. (4.110b)

These two boundary conditions can be combined into

D1 = ε1E1 = n̂ρs,

(at conductor surface)

(4.111)

where n̂ is a unit vector directed normally outward from the
conducting surface.

◮ The electric field lines point directly away from the

conductor surface when ρs is positive and directly toward

the conductor surface when ρs is negative. ◭

Figure 4-22 shows an infinitely long conducting slab placed

in a uniform electric field E1. The media above and below the

slab have permittivity ε1. Because E1 points away from the
upper surface, it induces a positive charge density ρs = ε1|E1|
on the upper slab surface. On the bottom surface, E1 points
toward the surface; therefore, the induced charge density is

−ρs. The presence of these surface charges induces an electric

field Ei in the conductor, resulting in a total field E = E1 +Ei.
To satisfy the condition that E must be everywhere zero in the

conductor, Ei must equal −E1.

If we place a metallic sphere in an electrostatic field
(Fig. 4-23), positive and negative charges accumulate on the

upper and lower hemispheres, respectively. The presence of

the sphere causes the field lines to bend to satisfy the condition
expressed by Eq. (4.111); that is, E is always normal to a

conductor boundary.

E1 E1 E1

E1 E1 E1Ei Ei Ei

+ + + + +

– – – – – – – – – – –– – – – –

+ + + + + + + ++ + +

ρs = ε1E1

−ρs

Conducting slab

ε1

ε1

Figure2-22 When a conducting slab is placed in an external electric field E1, charges that accumulate on the conductor surfaces induce

an internal electric field Ei = −E1. Consequently, the total field inside the conductor is zero.
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Figure 4-23 Metal sphere placed in an external electric

field E0.

2-8.2 Conductor–Conductor Boundary

We now examine the general case of the boundary between

two media—neither of which is a perfect dielectric or a perfect
conductor (Fig.2-24 ). Medium 1 has permittivity ε1 and

conductivity σ1, medium 2 has ε2 and σ2, and the interface

between them holds a surface charge density ρs. For the
electric fields, Eqs. (4.100) and (4.105b) give

E1t = E2t, ε1E1n − ε2E2n = ρs. (4.112)

Since we are dealing with conducting media, the electric fields

give rise to current densities J1 = σ1E1 and J2 = σ2E2. Hence,

J1t

σ1

=
J2t

σ2

, ε1

J1n

σ1

− ε2

J2n

σ2

= ρs. (4.113)

The tangential current components J1t and J2t represent cur-

rents flowing in the two media in a direction parallel to the



Medium 1

ε1, σ1

Medium 2

ε2, σ2

J1n

J2n

J1t

J2t

J1

J2

n̂

Figure2-24 Boundary between two conducting media.

boundary; hence, there is no transfer of charge between them.

This is not the case for the normal components. If J1n 6= J2n,

then a different amount of charge arrives at the boundary than
leaves it. Hence, ρs cannot remain constant in time, which

violates the condition of electrostatics requiring all fields

and charges to remain constant. Consequently, the normal

component of J has to be continuous across the boundary

between two different media under electrostatic conditions.

Upon setting J1n = J2n in Eq. (4.113), we have

J1n

(

ε1

σ1

− ε2

σ2

)

= ρs (electrostatics). (4.114)

Concept Question 2-22: What are the boundary con-

ditions for the electric field at a conductor–dielectric

boundary?

Concept Question 2-23:

Under electrostatic conditions, we require J1n = J2n

at the boundary between two conductors. Why?

2-9 Capacitance

When separated by an insulating (dielectric) medium, any two
conducting bodies, regardless of their shapes and sizes, form

a capacitor. If a dc voltage source is connected across them

(Fig. 4-25) the surfaces of the conductors connected to the
positive and negative source terminals accumulate charges +Q

and −Q, respectively.

–
– – –

–

–
––

––
–

E

Surface S

V
+

–

ρs

+ + + +
+

+

++++

+ +Q

Conductor 1

−Q
Conductor 2

Figure2-25 A dc voltage source connected to a capacitor

composed of two conducting bodies.

◮ When a conductor has excess charge, it distributes the

charge on its surface in such a manner as to maintain
a zero electric field everywhere within the conductor,

thereby ensuring that the electric potential is the same at

every point in the conductor. ◭

The capacitance of a two-conductor configuration is defined

as

C =
Q

V
(C/V or F), (4.115)

where V is the potential (voltage) difference between the
conductors. Capacitance is measured in farads (F), which is

equivalent to coulombs per volt (C/V).
The presence of free charges on the conductors’ surfaces

gives rise to an electric field E (Fig.2-25 ) with field lines

originating on the positive charges and terminating on the
negative ones. Since the tangential component of E always

vanishes at a conductor’s surface, E is always perpendicular

to the conducting surfaces. The normal component of E at any
point on the surface of either conductor is given by

En = n̂ ·E =
ρs

ε
,

(at conductor surface)

(4.116)

where ρs is the surface charge density at that point, n̂ is

the outward normal unit vector at the same location, and ε
is the permittivity of the dielectric medium separating the



conductors. The charge Q is equal to the integral of ρs over

surface S (Fig. 4-25):

Q =

∫

S
ρs ds =

∫

S
εn̂ ·E ds =

∫

S
εE ·ds, (4.117)

where use was made of Eq. (4.116). The voltage V is related

to E by Eq. (4.39):

V = V12 = −
∫ P1

P2

E ·dl, (4.118)

where points P1 and P2 are any two arbitrary points on

conductors 1 and 2, respectively. Substituting Eqs. (4.117) and

(4.118) into Eq. (4.115) gives

C =

∫

S
εE ·ds

−
∫

l
E ·dl

(F), (4.119)

where l is the integration path from conductor 2 to conductor 1.

To avoid making sign errors when applying Eq. (4.119), it is
important to remember that surface S is the +Q surface and

P1 is on S. [Alternatively, if you compute C and it comes out

negative, just change its sign.] Because E appears in both the
numerator and denominator of Eq. (4.119), the value of C

obtained for any specific capacitor configuration is always

independent of E’s magnitude. In fact, C depends only on the
capacitor geometry (sizes, shapes and relative positions of the

two conductors) and the permittivity of the insulating material.

If the material between the conductors is not a perfect

dielectric (i.e., if it has a small conductivity σ ), then current
can flow through the material between the conductors, and the

material exhibits a resistance R. The general expression for R

for a resistor of arbitrary shape is given by Eq. (4.81):

R =
−

∫

l
E ·dl

∫

S
σE ·ds

(Ω). (4.120)

For a medium with uniform σ and ε , the product of
Eqs. (4.119) and (4.120) gives

RC =
ε

σ
. (4.121)

This simple relation allows us to find R if C is known, and vice

versa.

Example2-14: Capacitance of Parallel-Plate
Capacitor

Obtain an expression for the capacitance C of a parallel-plate

capacitor comprised of two parallel plates each of surface
area A and separated by a distance d. The capacitor is filled

with a dielectric material with permittivity ε .

Solution: In Fig.2-26 , we place the lower plate of the capac-

itor in the x–y plane and the upper plate in the plane z = d.
Because of the applied voltage difference V , charges +Q and

−Q accumulate on the top and bottom capacitor plates. If the

plate dimensions are much larger than the separation d, then
these charges distribute themselves quasi-uniformly across

the plates, giving rise to a quasi-uniform field between them

pointing in the −ẑ direction. In addition, a fringing field will
exist near the capacitor edges, but its effects may be ignored

because the bulk of the electric field exists between the plates.
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Figure 4-26 A dc voltage source connected to a parallel-plate capacitor (Example 4-14).

The charge density on the upper plate is ρs = Q/A. Hence, in

the dielectric medium

E = −ẑE ,

and from Eq. (4.116), the magnitude of E at the conductor–

dielectric boundary is E = ρs/ε = Q/εA. From Eq. (4.118),

the voltage difference is

V = −
∫ d

0
E ·dl = −

∫ d

0
(−ẑE) · ẑ dz = Ed, (4.122)

and the capacitance is

C =
Q

V
=

Q

Ed
=

εA

d
, (4.123)

where use was made of the relation E = Q/εA.

Example2-15: Capacitance per Unit Length
of Coaxial Line

Obtain an expression for the capacitance of the coaxial line

shown in Fig. 4-27.

Solution: For a given voltage V across the capacitor, charges

+Q and −Q accumulate on the surfaces of the outer and inner
conductors, respectively. We assume that these charges are

uniformly distributed along the length and circumference of

the conductors with surface charge density ρ ′
s = Q/2πbl on

the outer conductor and ρ ′′
s = −Q/2πal on the inner one.

Ignoring fringing fields near the ends of the coaxial line, we
can construct a cylindrical Gaussian surface in the dielectric in

between the conductors with the radius r such that a < r < b.

Symmetry implies that the E-field is identical at all points on
this surface, which is directed radially inward. From Gauss’s

law, it follows that the field magnitude equals the absolute

+ + + + + + + + + + + +

+ + + + + + + + + + + +

– – – – – – – – – – –

+

– –

– – – – – – – – – – – –

+

–

V
+

– b

a

ρl
–ρl

l

E E E

E E E
Dielectric material ε

Outer conductor

Inner conductor

Figure 4-27 Coaxial capacitor filled with insulating material of permittivity ε (Example 4-15).



value of the total charge enclosed, divided by the surface area.
That is,

E = −r̂
Q

2πεrl
. (4.124)

The potential difference V between the outer and inner con-

ductors is

V = −
∫ b

a
E ·dl = −

∫ b

a

(

−r̂
Q

2πεrl

)

· (r̂ dr)

=
Q

2πεl
ln

(

b

a

)

. (4.125)

The capacitance C is then given by

C =
Q

V
=

2πεl

ln(b/a)
, (4.126)

and the capacitance per unit length of the coaxial line is

C ′ =
C

l
=

2πε

ln(b/a)
(F/m). (4.127)

Concept Question2-24: How is the capacitance of a

two-conductor structure related to the resistance of the
insulating material between the conductors?

Concept Question2-25: What are fringing fields and

when may they be ignored?

2-10 Electrostatic Potential Energy

A source connected to a capacitor expends energy in charging

up the capacitor. If the capacitor plates are made of a good
conductor with effectively zero resistance, and if the dielectric

separating the two plates has negligible conductivity, then no
real current can flow through the dielectric, and no ohmic

losses occur anywhere in the capacitor. Where then does the

energy expended in charging up the capacitor go? The energy
ends up getting stored in the dielectric medium in the form of

electrostatic potential energy. The amount of stored energy We

is related to Q, C, and V .
Suppose we were to charge up a capacitor by ramping up

the voltage across it from υ = 0 to υ = V . During the process,

charge +q accumulates on one conductor and −q on the other.
In effect, a charge q has been transferred from one of the

conductors to the other. The voltage υ across the capacitor is

related to q by

υ =
q

C
. (4.128)

From the definition of υ , the amount of work dWe required
to transfer an additional incremental charge dq from one

conductor to the other is

dWe = υ dq =
q

C
dq. (4.129)

If we transfer a total charge Q between the conductors of an

initially uncharged capacitor, then the total amount of work
performed is

We =

∫ Q

0

q

C
dq =

1

2

Q2

C
(J). (4.130)

Using C = Q/V , where V is the final voltage, We also can be
expressed as

We = 1
2
CV 2 (J). (4.131)

The capacitance of the parallel-plate capacitor discussed in
Example 4-14 is given by Eq. (4.123) as C = εA/d, where A is

the surface area of each of its plates and d is the separation

between them. Also, the voltage V across the capacitor is
related to the magnitude of the electric field E in the dielectric

by V = Ed. Using these two expressions in Eq. (4.131) gives

We = 1
2

εA

d
(Ed)2 = 1

2
εE2(Ad) = 1

2
εE2υ , (4.132)

where υ = Ad is the volume of the capacitor. This expression
affirms the assertion made at the beginning of this section,

namely that the energy expended in charging up the capacitor

is being stored in the electric field present in the dielectric
material in between the two conductors.

The electrostatic energy density we is defined as the electro-

static potential energy We per unit volume:

we =
We

υ
=

1

2
εE2 (J/m3). (4.133)

Even though this expression was derived for a parallel-plate

capacitor, it is equally valid for any dielectric medium contain-

ing an electric field E, including a vacuum. Furthermore, for
any volume υ , the total electrostatic potential energy stored in

it is

We =
1

2

∫

υ
εE2 dυ (J). (4.134)

Returning to the parallel-plate capacitor, the oppositely
charged plates are attracted to each other by an electrical

force Fe. In terms of the coordinate system of Fig.2-28 , the
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Figure2-28 A dc voltage source connected to a parallel-plate capacitor.

electrical force acting on the upper plate is along −ẑ (due to

attraction by the lower plate). Hence, it is given by

Fe = −ẑ Fe (force on upper plate). (4.135)

Our plan is to compute Fe from energy considerations. We

start by converting the spacing d into a variable z and using
C = εA/z in Eq. (4.131):

We = 1
2

CV 2 = 1
2

εAV 2

z
. (4.136)

If V is maintained at a constant level, We decreases when

increasing the separation z between the plates. If an external,

upward-directed force F = −Fe is applied to counter the
electrostatic force Fe and used to move the upper plate upwards

by a distance dz, the expended mechanical work is

dW = F · ẑ dz. (4.137)

The work dW is equal to the loss in electrostatic energy stored

in the capacitor. That is,

dW = −dWe. (4.138)

Also, Fe = −F, which leads to

dWe = Fe · ẑ dz = −ẑ Fe · ẑ dz = −Fe dz. (4.139)

From Eq. (4.136),

dWe = − 1
2

ε
AV 2

z2
dz. (4.140)

Equating Eqs. (4.139) and (4.140) and replacing z with d leads

to

Fe = 1
2

ε
AV 2

d2
, (4.141a)

and

Fe = −ẑ 1
2

εA
V 2

d2
(N).

(parallel-plate capacitor)

(4.141b)

This is the electrostatic force exerted on the upper plate. The
force on the lower plate is identical in magnitude and opposite

in direction.

The relationship given by Eq. (4.139) pertains to a capacitor
with dl = ẑ dz. We can generalize the result for dl along any

direction as

Fe = −∇We. (4.142)

Example2-16: Force on Sliding Dielectric

The two plates of the parallel-plate capacitor shown in

Fig. 4-29 are each of length ℓ and width w, and the separation

between them is d. The capacitor contains a dielectric block of
dimensions ℓ×w× d and permittivity ε . The block can slide

in and out of the capacitor cavity along its length dimension.

Compute the force Fe acting on the dielectric block when it
is partially outside of the cavity and the voltage across the

capacitor is V .

Solution: From Eq. (4.122), the electric field inside the

capacitor cavity is

E =
V

d
.

This is true in both the section containing the dielectric block

and the section filled with air. The total electrostatic energy of
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Figure 4-29 Parallel-plate capacitor with slidable dielectric block.

the capacitor consists of two components: one for the volume

containing the dielectric block of permittivity ε and volume

υ1 = xwd, and another for the volume containing air with ε0

and volume υ2 = (ℓ− x)wd. Hence,

We = 1
2

εE2υ1 + 1
2

ε0E2υ2

= 1
2

ε

(

V

d

)2

xwd + 1
2

ε0

(

V

d

)2

(ℓ− x)wd

= 1
2

V 2

d
w[εx + ε0(ℓ− x)]. (4.143)

Since ε > ε0, the electrostatic energy is maximum when x = ℓ
(dielectric block fully inside the cavity). Sliding the dielec-
tric block out of the capacitor requires exerting an external

mechanical force F to oppose the electrostatic force Fe, whose

tendency is to oppose reduction in We. Thus, the direction of
Fe is to pull the block back into the capacitor.

The magnitude of Fe can be obtained from

Fe =
dWe

dx

=
d

dx

[

1

2

V 2

d
w[εx + ε0(ℓ− x)]

]

=
1

2

V 2

d
w(ε − ε0). (4.144)

Concept Question 4-26: To bring a charge q from

infinity to a given point in space, a certain amount of
work W is expended. Where does the energy correspond-

ing to W go?

Concept Question 2-27: When a voltage source is con-

nected across a capacitor, what is the direction of the

electrical force acting on its two conducting surfaces?

Exercise 2-18:The radii of the inner and outer conductors
of a coaxial cable are 2 cm and 5 cm, respectively, and

the insulating material between them has a relative per-

mittivity of 4. The charge density on the outer conductor
is ρℓ = 10−4 (C/m). Use the expression for E derived in

Example 4-15 to calculate the total energy stored in a

20 cm length of the cable.

Answer: We = 4.1 J. (See EM .)

2-11 Image Method

Consider a point charge Q at a distance d above a horizontally

infinite, perfectly conducting plate (Fig. 4-30(a)). We want to
determine V and E at any point in the space above the plate,

as well as the surface charge distribution on the plate. Three

different methods for finding E have been introduced in this
chapter The first method, based on Coulomb’s law, requires

knowledge of the magnitudes and locations of all the charges.

In the present case, the charge Q induces an unknown and
nonuniform distribution of charge on the plate. Hence, we

cannot utilize Coulomb’s method. The second method, based
on Gauss’s law, is equally difficult to use because it is not

clear how to construct a Gaussian surface across which E is

only tangential or only normal. The third method is based
on evaluating the electric field using E = −∇V after solving

Poisson’s or Laplace’s equation for V subject to the available

boundary conditions, but it is mathematically involved.
Alternatively, the problem at hand can be solved using

image theory.



(a)  Charge Q above grounded plane (b)  Equivalent configuration

Electric field
lines

V = 0d

d

Q

−Q

ε

ε

+

–

V = 0 d

z

Q

σ = ∞

ε
+

n̂

Figure2-30 By image theory, a charge Q above a grounded, perfectly conducting plane is equivalent to Q and its image −Q with the

grounded plane removed.

◮ Any given charge configuration above an infinite,
perfectly conducting plane is electrically equivalent to the

combination of the given charge configuration and its im-

age configuration with the conducting plane removed. ◭

The image-method equivalent of the charge Q above a

conducting plane is shown in the right-hand section of
Fig.2-30 . It consists of the charge Q itself and an image

charge −Q at a distance 2d from Q with nothing else between

them. The electric field due to the two isolated charges can now
be easily found at any point (x,y,z) by applying Coulomb’s

method, as demonstrated by Example 4-17. By symmetry, the

combination of the two charges always produces a potential
V = 0 at every point in the plane previously occupied by the

conducting surface. If the charge resides in the presence of
more than one grounded plane, it is necessary to establish its

images relative to each of the planes and then to establish

images of each of those images against the remaining planes.

The process is continued until the condition V = 0 is satisfied

everywhere on all grounded planes. The image method applies

not only to point charges but also to distributions of charge,
such as the line and volume distributions depicted in Fig.2-31 .

Once E has been determined, the charge induced on the plate

can be found from

ρs = (n̂ ·E)ε0, (4.145)

where n̂ is the normal unit vector to the plate (Fig.2-30(a) ).

Example2-17: Image Method for Charge
above Conducting Plane

Use image theory to determine E at an arbitrary point

P = (x,y,z) in the region z > 0 due to a charge Q in free space

at a distance d above a grounded conducting plate residing in
the z = 0 plane.

(a)  Charge distributions above grounded plane (b)  Equivalent distributions

V = 0

ρl ρv
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ε

ρl
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Figure2-31 Charge distributions above a conducting plane and their image-method equivalents.



Q = (0, 0, d)

P = (x, y, z)

–Q = (0, 0, –d)

R1

R2

z = 0  plane

z

+

–

Figure2-32 Application of the image method for finding E at

point P (Example 4-17).

Solution: In Fig.2-32 , charge Q is at (0,0,d), and its

image −Q is at (0,0,−d). From Eq. (4.19), the electric field at

point P(x,y,z) due to the two charges is given by the following
equation.

E =
1

4πε0

(

QR1

R3
1

+
−QR2

R3
2

)

=
Q

4πε0

[

x̂x + ŷy + ẑ(z−d)

[x2 + y2 +(z−d)2]3/2
− x̂x + ŷy + ẑ(z+ d)

[x2 + y2 +(z+ d)2]3/2

]

for z ≥ 0.

Concept Question 2-28: What is the fundamental
premise of the image method?

Concept Question 2-29: Given a charge distribution,

what are the various approaches described in this chapter
for computing the electric field E at a given point in space?

Exercise 2-19: Use the result of Example 4-17 to find the

surface charge density ρs on the surface of the conducting

plane.

Answer: ρs = −Qd/[2π(x2 + y2 + d2)3/2]. (See EM .)

Chapter 2 Summary

Concepts

• Maxwell’s equations are the fundamental tenets of
electromagnetic theory.

• Under static conditions, Maxwell’s equations separate

into two uncoupled pairs with one pair pertaining to
electrostatics and the other to magnetostatics.

• Coulomb’s law provides an explicit expression for the

electric field due to a specified charge distribution.
• Gauss’s law states that the total electric field flux

through a closed surface is equal to the net charge

enclosed by the surface.
• The electrostatic field E at a point is related to the

electric potential V at that point by E = −∇V with V

often being referenced to zero at infinity.
• Because most metals have conductivities on the order

of 106 (S/m), they are treated in practice as perfect
conductors. By the same token, insulators with conduc-

tivities smaller than 10−10 (S/m) often are treated as
perfect dielectrics.

• Boundary conditions at the interface between two mate-

rials specify the relations between the normal and
tangential components of D, E, and J in one of the

materials to the corresponding components in the other.

• The capacitance of a two-conductor body and resis-
tance of the medium between them can be computed

from knowledge of the electric field in that medium.

• The electrostatic energy density stored in a dielectric
medium is we = 1

2
εE2 (J/m3).

• When a charge configuration exists above an infinite,

perfectly conducting plane, the induced field E is the
same as that due to the configuration itself and its image

with the conducting plane removed.



Mathematical and Physical Models

Maxwell’s Equations for Electrostatics

Name Differential Form Integral Form

Gauss’s law ∇ ·D = ρv

∫

S
D ·ds = Q

Kirchhoff’s law ∇×××E = 0

∫

C
E ·dl = 0

Electric Field

Current density J = ρvu

Poisson’s equation ∇2V = −ρv

ε

Laplace’s equation ∇2V = 0

Resistance R =
−

∫

l
E ·dl

∫

S
σE ·ds

Boundary conditions Table 4-3

Capacitance C =

∫

S
εE ·ds

−
∫

l
E ·dl

RC relation RC =
ε

σ

Energy density we = 1
2
εE2

Point charge E = R̂
q

4πεR2

Many point charges E =
1

4πε

N

∑
i=1

qi(R−Ri)

|R−Ri|3

Volume distribution E =
1

4πε

∫

υ ′
R̂
′ ρv dυ ′

R′2

Surface distribution E =
1

4πε

∫

S′
R̂
′ ρs ds′

R′2

Line distribution E =
1

4πε

∫

l′
R̂
′ ρℓ dl′

R′2

Infinite sheet of charge E = ẑ
ρs

2ε0

Infinite line of charge E =
D

ε0

= r̂
Dr

ε0

= r̂
ρℓ

2πε0r

Dipole E =
qd

4πε0R3
(R̂2cosθ + θ̂θθsin θ )

Relation to V E = −∇V

PROBLEMS

Sections 4-2: Charge and Current Distributions

∗
2-1 A cube 2 m on a side is located in the first octant in

a Cartesian coordinate system with one of its corners at the

origin. Find the total charge contained in the cube if the charge
density is given by ρv = xy2e−2z (mC/m3).

2.2 Find the total charge contained in a cylindrical volume

defined by r ≤ 2 m and 0 ≤ z ≤ 3 m if ρv = 20rz (mC/m3).

∗
2.3 Find the total charge contained in a round-top cone
defined by R ≤ 2 m and 0 ≤ θ ≤ π/4 given that

ρv = 10R2 cos2 θ (mC/m3).

2.4 If the line charge density is given by ρl = 24y2 (mC/m),

find the total charge distributed on the y axis from y = −5 to

y = 5.



Important Terms Provide definitions or explain the meaning of the following terms:

boundary conditions

capacitance C

charge density

conductance G

conduction current
conductivity σ
conductor
conservative field

constitutive parameters

convection current
Coulomb’s law

current density J

dielectric breakdown voltage Vbr

dielectric material

dielectric strength Eds

dipole moment p

electric dipole

electric field intensity E

electric flux density D

electric potential V

electric susceptibility χe

electron drift velocity ue

electron mobility µe

electrostatic energy density we

electrostatic potential energy We

electrostatics

equipotential
Gaussian surface

Gauss’s law

hole drift velocity uh

hole mobility µh

homogeneous material

image method
isotropic material

Joule’s law

Kirchhoff’s voltage law
Laplace’s equation

linear material

Ohm’s law
perfect conductor

perfect dielectric
permittivity ε
Poisson’s equation

polarization vector P

relative permittivity εr

semiconductor

static condition
superconductor

volume, surface, and line

charge densities

2.5 Find the total charge on a circular disk defined by r ≤ a

and z = 0 if:

(a) ρs = ρs0 cosφ (C/m2)

(b) ρs = ρs0 sin2 φ (C/m2)

(c) ρs = ρs0e−r (C/m2)

(d) ρs = ρs0e−r sin2 φ (C/m2)

where ρs0 is a constant.

2.6 If J = ŷ4xz (A/m2), find the current I flowing through a
square with corners at (0,0,0), (2,0,0), (2,0,2), and (0,0,2).

∗
2.7 If J = R̂5/R (A/m2), find I through the surface R = 5 m.

∗
2.8 A square with sides of 2 m has a charge of 40 µC at

each of its four corners. Determine the electric field at a point

5 m above the center of the square.

2-9 Three point charges, each with q = 3 nC, are located at

the corners of a triangle in the x–y plane, with one corner at
the origin, another at (2 cm,0,0), and the third at (0,2 cm,0).
Find the force acting on the charge located at the origin.

∗
2.10 Charge q1 = 6 µC is located at (1 cm,1 cm,0) and
charge q2 is located at (0,0,4 cm). What should q2 be so that

E at (0,2 cm,0) has no y component?

2.11 A line of charge with uniform density ρℓ = 8 (µC/m)
exists in air along the z axis between z = 0 and z = 5 cm. Find

E at (0,10 cm,0).

∗
2-12 The electric flux density inside a dielectric sphere of

radius a centered at the origin is given by

D = R̂ρ0R (C/m2)

where ρ0 is a constant. Find the total charge inside the sphere.

2.13 In a certain region of space, the charge density is given
in cylindrical coordinates by the function

ρv = 5re−r (C/m3).


